Kimmo Kartasalo

DDLS Fellow, Karolinska Institutet

Key publications

Artificial intelligence for diagnosis and Gleason grading of prostate cancer in biopsies: The PANDA challenge, Nature Medicine, 28 (1), 154-163, 2022, Bulten W*, Kartasalo K*, Chen C*, Ström P, Pinckaers H, Nagpal K, Cai Y, Steiner D, van Boven H, Vink R, Hulsbergen-van de Kaa C, van der Laak J, Amin M, Evans A, van der Kwast T, Allan R, Humphrey P, Grönberg H, Samaratunga H, Delahunt B, Tsuzuki T, Häkkinen T, Egevad L, Demkin M, Dane S, Tan F, Valkonen M, Corrado G, Peng L, Mermel C, Ruusuvuori P, Litjens G, Eklund M, PANDA Challenge Consortium, https://doi.org/10.1038/s41591-021-01620-2, PMID: 35027755

Detection of perineural invasion in prostate needle biopsies with deep neural networks, Virchows Archiv, 481 (1), 73-82, 2022, Kartasalo K, Ström P, Ruusuvuori P, Samaratunga H, Delahunt B, Tsuzuki T, Eklund M, Egevad L, https://doi.org/10.1007/s00428-022-03326-3, PMID: 35449363

Predicting molecular phenotypes from histopathology images: a transcriptome-wide expression-morphology analysis in breast cancer, Cancer Research, 81 (19), 5115–5126, 2021, Wang Y*, Kartasalo K*, Weitz P, Acs B, Valkonen M, Larsson C, Ruusuvuori P, Hartman J, Rantalainen M, https://doi.org/10.1158/0008-5472.can-21-0482, PMID: 34341074

OpenPhi: An interface to access Philips iSyntax whole slide images for computational pathology, Bioinformatics, 37 (21), 3995-3997, 2021, Mulliqi N*, Kartasalo K*, Olsson H, Ji X, Egevad L, Eklund M, Ruusuvuori P, https://doi.org/10.1093/bioinformatics/btab578, PMID: 34358287

Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study, The Lancet Oncology, 21 (2), 222-232, 2020, Ström P*, Kartasalo K*, Olsson H, Solorzano L, Delahunt B, Berney DM, Bostwick DG, Evans AJ, Grignon DJ, Humphrey PA, Iczkowski KA, Kench JG, Kristiansen G, van der Kwast TH, Leite KRM, McKenney JK, Oxley J, Pan CC, Samaratunga H, Srigley JR, Takahashi H, Tsuzuki T, Varma M, Zhou M, Lindberg J, Bergström C, Ruusuvuori P, Wählby C, Grönberg H, Rantalainen M, Egevad L, Eklund M, https://doi.org/10.1016/s1470-2045(19)30738-7, PMID: 31926806

Comparative analysis of tissue reconstruction algorithms for 3D histology, Bioinformatics, 34 (17), 3013-3021, 2018, Kartasalo K, Latonen L, Vihinen J, Visakorpi T, Nykter M, Ruusuvuori P, https://doi.org/10.1093/bioinformatics/bty210, PMID: 29684099

Artificial intelligence (AI) and machine learning provide new opportunities for precision medicine, where data-driven approaches are applied for improved diagnostics, prognostication and treatment decisions. One of the medical disciplines that are becoming increasingly data-driven is pathology, where digital scanning of tissue samples is becoming a routine practice and will provide vast amounts of image data usable as the basis for more efficient and accurate clinical management of diseases like cancer.

In our group, we apply the latest AI techniques to the analysis of digital pathology data with the aim of improving the efficiency, accuracy and reproducibility of pathological assessments. By developing AI-based decision support tools, routine tasks can be partially or fully automated, and a tireless “digital colleague” provided to pathologists who struggle with an increasing workload and the demand for more extensive and precise quantification.

Taking a step further, we increasingly work on multi-modal analytics, where image data is processed together with molecular information and clinical variables to build AI models capable of estimating the most likely future course of an individual’s disease and predicting optimal therapeutic options.

The core competences of the group include large-scale image processing and analysis, development of deep learning based AI algorithms, and efficient utilization of high-performance computing systems. We work together with a wide international network of clinical collaborators to reach these aims and to ensure that our AI solutions are applicable across diverse clinical settings and patient populations.

Group members

Sol Erika Boman (PhD student, principal supervisor)
Xiaoyi Ji (PhD student, co-supervisor)
Kelvin Szolnoky (PhD student, co-supervisor)
Andrea Camilloni (PhD student, co-supervisor)

Last updated: 2024-09-19

Content Responsible: Hampus Persson(hampus.persson@scilifelab.uu.se)